Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38332016

RESUMO

DNA cytosine methylation has been documented as a potential epigenetic mechanism of transcriptional regulation underlying opioid use disorder. However, methylation of RNA cytosine residues, which would drive another level of biological influence as an epitranscriptomic mechanism of gene and protein regulation has not been studied in the context of addiction. Here, we probed whether chronic morphine exposure could alter tRNA cytosine methylation (m5C) and resulting expression levels in the medial prefrontal cortex (mPFC), a brain region crucial for reward processing and executive function that exhibits opioid-induced molecular restructuring. We identified dynamic changes in glycine tRNA (tRNAGlyGCC) cytosine methylation, corresponding to altered expression levels of this tRNA at multiple timepoints following 15 days of daily morphine. Additionally, a robust increase in methylation, coupled with decreased expression, was present after 30 days of withdrawal, suggesting that repeated opioid administration produces changes to the tRNA regulome long after discontinuation. Furthermore, forebrain-wide knockout of neuronal Nsun2, a tRNA methyltransferase, was associated with disruption of opioid conditioned place preference, and this effect was recapitulated by regional mPFC Nsun2 knockout. Taken together, these studies provide a foundational link between the regulation of tRNA cytosine methylation and opioid reward and highlight the tRNA machinery as a potential therapeutic target in addiction.

2.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244545

RESUMO

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma , Cognição , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
3.
Schizophr Res ; 264: 1-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086109

RESUMO

With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.


Assuntos
Transtorno Autístico , Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Gravidez , Recém-Nascido , Feminino , Humanos , Esquizofrenia/diagnóstico , Transtornos Psicóticos/diagnóstico , Encéfalo/patologia
4.
Curr HIV/AIDS Rep ; 20(6): 357-367, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947981

RESUMO

PURPOSE OF REVIEW: The adult human brain harbors billions of microglia and other myeloid and lymphoid cells highly susceptible to HIV infection and retroviral insertion into the nuclear DNA. HIV infection of the brain is important because the brain is a potentially large reservoir site that may be a barrier to HIV cure strategies and because infection can lead to the development of HIV-associated neurocognitive disorder. To better understand both the central nervous system (CNS) reservoir and how it can cause neurologic dysfunction, novel genomic, epigenomic, transcriptomic, and proteomic approaches need to be employed. Several characteristics of the reservoir are important to learn, including where the virus integrates, whether integrated proviruses are intact or defective, whether integrated proviruses can be reactivated from a latent state to seed ongoing infection, and how this all impacts brain function. RECENT FINDINGS: Here, we discuss similarities and differences of viral integration sites between brain and blood and discuss evidence for and against the hypothesis that in the absence of susceptible T-lymphocytes in the periphery, the virus housing in the infected brain is not able to sustain a systemic infection. Moreover, microglia from HIV + brains across a wide range of disease severity appear to share one type of common alteration, which is defined by downregulated expression, and repressive chromosomal compartmentalization, for microglial genes regulating synaptic connectivity. Therefore, viral infection of the brain, including in immunocompetent cases with near-normal levels of CD4 blood lymphocytes, could be associated with an early disruption in microglia-dependent neuronal support functions, contributing to cognitive and neurological deficits in people living with HIV.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/complicações , Infecções por HIV/genética , Proteômica , Encéfalo , Sistema Nervoso Central , Linfócitos T CD4-Positivos
5.
Sci Data ; 10(1): 813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985666

RESUMO

Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.


Assuntos
Transtornos Mentais , Humanos , Transtorno do Espectro Autista/genética , Encéfalo , Genômica , Mosaicismo , Genoma Humano , Transtornos Mentais/genética
6.
J Virol ; 97(12): e0159523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032195

RESUMO

IMPORTANCE: Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.


Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Humanos , Camundongos , Sistema Nervoso Central , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/fisiologia , Microglia/virologia , Latência Viral , Xenoenxertos
7.
Science ; 381(6662): 1049-1050, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676934

RESUMO

The three-dimensional organization of the genome is remodeled throughout life.

8.
Nat Commun ; 14(1): 5610, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699936

RESUMO

Dynamic interactions of neurons and glia in the ventral midbrain mediate reward and addiction behavior. We studied gene expression in 212,713 ventral midbrain single nuclei from 95 individuals with history of opioid misuse, and individuals without drug exposure. Chronic exposure to opioids was not associated with change in proportions of glial and neuronal subtypes, however glial transcriptomes were broadly altered, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes. Genes associated with activation of the immune response including interferon, NFkB signaling, and cell motility pathways were upregulated, contrasting with down-regulated expression of synaptic signaling and plasticity genes in ventral midbrain non-dopaminergic neurons. Ventral midbrain transcriptomic reprogramming in the context of chronic opioid exposure included 325 genes that previous genome-wide studies had linked to risk of substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Transtornos Relacionados ao Uso de Opioides/genética , Analgésicos Opioides , Mesencéfalo
9.
Neuroscience ; 529: 99-106, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598835

RESUMO

Genomic imprinting is a predominantly brain and placenta-specific epigenetic process that contributes to parent-of-origin-specific gene expression. While microRNAs are highly expressed in the brain, their imprinting status in this tissue remains poorly studied. Previous research demonstrated that Mir125b-2 is imprinted in the human brain and regulates hippocampal circuits and functions in mice. However, the imprinting status of another isoform of miR125b, Mir125b-1, in the human brain, as well as its spatiotemporal expression patterns in mice, have not been elucidated. Here, we show MIR125B1 is not imprinted in the human brain. Moreover, miR-125b-1 was highly expressed in the brains of mice. Furthermore, miR-125b-1 was down-regulated during brain development in mice. Specifically, miR-125b-1 displayed preferential expression in the olfactory bulb, thalamus, and hypothalamus of the mouse brain. Notably, miR-125b-1 was enriched in GABAergic neurons, particularly somatostatin-expressing GABAergic neurons, compared with glutamatergic neurons. Taken together, our findings provide the imprinting status and comprehensive spatiotemporal expression profiling of Mir125b-1 in the brain.

10.
Cell Genom ; 3(8): 100356, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601975

RESUMO

While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)-present in some but not all cells-remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e-4), with recurrent somatic deletions of exons 1-5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5' deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk.

11.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502907

RESUMO

Common variants associated with schizophrenia are concentrated in non-coding regulatory sequences, but their precise target genes are context-dependent and impacted by cell-type-specific three-dimensional spatial chromatin organization. Here, we map long-range chromosomal conformations in isogenic human dopaminergic, GABAergic, and glutamatergic neurons to track developmentally programmed shifts in the regulatory activity of schizophrenia risk loci. Massive repressive compartmentalization, concomitant with the emergence of hundreds of neuron-specific multi-valent chromatin architectural stripes, occurs during neuronal differentiation, with genes interconnected to genetic risk loci through these long-range chromatin structures differing in their biological roles from genes more proximal to sequences conferring heritable risk. Chemically induced CRISPR-guided chromosomal loop-engineering for the proximal risk gene SNAP91 and distal risk gene BHLHE22 profoundly alters synaptic development and functional activity. Our findings highlight the large-scale cell-type-specific reorganization of chromosomal conformations at schizophrenia risk loci during neurodevelopment and establish a causal link between risk-associated gene-regulatory loop structures and neuronal function.

12.
bioRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37503149

RESUMO

Here, we construct genome-scale maps for R-loops, three-stranded nucleic acid structures comprised of a DNA/RNA hybrid and a displaced single strand of DNA, in the proliferative and differentiated zones of the human prenatal brain. We show that R-loops are abundant in the progenitor-rich germinal matrix, with preferential formation at promoters slated for upregulated expression at later stages of differentiation, including numerous neurodevelopmental risk genes. RNase H1-mediated contraction of the genomic R-loop space in neural progenitors shifted differentiation toward the neuronal lineage and was associated with transcriptomic alterations and defective functional and structural neuronal connectivity in vivo and in vitro. Therefore, R-loops are important for fine-tuning differentiation-sensitive gene expression programs of neural progenitor cells.

13.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162838

RESUMO

The central nervous system (CNS) is a major human immunodeficiency virus type 1 reservoir. Microglia are the primary target cell of HIV-1 infection in the CNS. Current models have not allowed the precise molecular pathways of acute and chronic CNS microglial infection to be tested with in vivo genetic methods. Here, we describe a novel humanized mouse model utilizing human-induced pluripotent stem cell-derived microglia to xenograft into murine hosts. These mice are additionally engrafted with human peripheral blood mononuclear cells that served as a medium to establish a peripheral infection that then spread to the CNS microglia xenograft, modeling a trans-blood-brain barrier route of acute CNS HIV-1 infection with human target cells. The approach is compatible with iPSC genetic engineering, including inserting targeted transgenic reporter cassettes to track the xenografted human cells, enabling the testing of novel treatment and viral tracking strategies in a comparatively simple and cost-effective way vivo model for neuroHIV.

14.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945611

RESUMO

Dynamic interactions of neurons and glia in the ventral midbrain (VM) mediate reward and addiction behavior. We studied gene expression in 212,713 VM single nuclei from 95 human opioid overdose cases and drug-free controls. Chronic exposure to opioids left numerical proportions of VM glial and neuronal subtypes unaltered, while broadly affecting glial transcriptomes, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes, with prominent activation of the immune response including interferon, NFkB signaling, and cell motility pathways, sharply contrasting with down-regulated expression of synaptic signaling and plasticity genes in VM non-dopaminergic neurons. VM transcriptomic reprogramming in the context of opioid exposure and overdose included 325 genes with genetic variation linked to substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.

15.
Commun Biol ; 6(1): 267, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918719

RESUMO

Genomic imprinting predominantly occurs in the placenta and brain. Few imprinted microRNAs have been identified in the brain, and their functional roles in the brain are not clear. Here we show paternal, but not maternal, expression of MIR125B2 in human but not mouse brain. Moreover, Mir125b-2m-/p- mice showed impaired learning and memory, and anxiety, whose functions were hippocampus-dependent. Hippocampal granule cells from Mir125b-2m-/p- mice displayed increased neuronal excitability, increased excitatory synaptic transmission, and decreased inhibitory synaptic transmission. Glutamate ionotropic receptor NMDA type subunit 2A (Grin2a), a key regulator of synaptic plasticity, was physically bound by miR-125b-2 and upregulated in the hippocampus of Mir125b-2m-/p- mice. Taken together, our findings demonstrate MIR125B2 imprinted in human but not mouse brain, mediated learning, memory, and anxiety, regulated excitability and synaptic transmission in hippocampal granule cells, and affected hippocampal expression of Grin2a. Our work provides functional mechanisms of a species-specific imprinted microRNA in the brain.


Assuntos
Hipocampo , MicroRNAs , Animais , Humanos , Camundongos , Hipocampo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Transmissão Sináptica/fisiologia
16.
Mol Psychiatry ; 28(5): 1970-1982, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34493831

RESUMO

Dopaminergic neurons are critical to movement, mood, addiction, and stress. Current techniques for generating dopaminergic neurons from human induced pluripotent stem cells (hiPSCs) yield heterogenous cell populations with variable purity and inconsistent reproducibility between donors, hiPSC clones, and experiments. Here, we report the rapid (5 weeks) and efficient (~90%) induction of induced dopaminergic neurons (iDANs) through transient overexpression of lineage-promoting transcription factors combined with stringent selection across five donors. We observe maturation-dependent increase in dopamine synthesis and electrophysiological properties consistent with midbrain dopaminergic neuron identity, such as slow-rising after- hyperpolarization potentials, an action potential duration of ~3 ms, tonic sub-threshold oscillatory activity, and spontaneous burst firing at a frequency of ~1.0-1.75 Hz. Transcriptome analysis reveals robust expression of genes involved in fetal midbrain dopaminergic neuron identity. Specifically expressed genes in iDANs, as well as those from isogenic induced GABAergic and glutamatergic neurons, were enriched in loci conferring heritability for cannabis use disorder, schizophrenia, and bipolar disorder; however, each neuronal subtype demonstrated subtype-specific heritability enrichments in biologically relevant pathways, and iDANs alone were uniquely enriched in autism spectrum disorder risk loci. Therefore, iDANs provide a critical tool for modeling midbrain dopaminergic neuron development and dysfunction in psychiatric disease.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Humanos , Neurônios Dopaminérgicos/metabolismo , Transtorno do Espectro Autista/metabolismo , Reprodutibilidade dos Testes , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesencéfalo/metabolismo
17.
Acta Neuropathol ; 145(1): 29-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357715

RESUMO

Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Camundongos , Animais , Humanos , Adulto , Metiltransferases/genética , Fosforilação/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , MicroRNAs/genética , Proteínas tau/metabolismo , Mamíferos/metabolismo
18.
Mol Cell ; 82(24): 4647-4663.e8, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525955

RESUMO

To explore genome organization and function in the HIV-infected brain, we applied single-nuclei transcriptomics, cell-type-specific chromosomal conformation mapping, and viral integration site sequencing (IS-seq) to frontal cortex from individuals with encephalitis (HIVE) and without (HIV+). Derepressive changes in 3D genomic compartment structures in HIVE microglia were linked to the transcriptional activation of interferon (IFN) signaling and cell migratory pathways, while transcriptional downregulation and repressive compartmentalization of neuronal health and signaling genes occurred in both HIVE and HIV+ microglia. IS-seq recovered 1,221 brain integration sites showing distinct genomic patterns compared with peripheral lymphocytes, with enrichment for sequences newly mobilized into a permissive chromatin environment after infection. Viral transcription occurred in a subset of highly activated microglia comprising 0.33% of all nuclei in HIVE brain. Our findings point to disrupted microglia-neuronal interactions in HIV and link retroviral integration to remodeling of the microglial 3D genome during infection.


Assuntos
Infecções por HIV , Microglia , Humanos , Microglia/metabolismo , Encéfalo , Ativação de Macrófagos , Macrófagos , Infecções por HIV/genética
20.
Genes (Basel) ; 13(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36360237

RESUMO

Non-random spatial organization of the chromosomal material inside the nuclei of brain cells emerges as an important regulatory layer of genome organization and function in health and disease. Here, we discuss how integrative approaches assessing chromatin in context of the 3D genome is providing new insights into normal and diseased neurodevelopment. Studies in primate (incl. human) and rodent brain have confirmed that chromosomal organization in neurons and glia undergoes highly dynamic changes during pre- and early postnatal development, with potential for plasticity across a much wider age window. For example, neuronal 3D genomes from juvenile and adult cerebral cortex and hippocampus undergo chromosomal conformation changes at hundreds of loci in the context of learning and environmental enrichment, viral infection, and neuroinflammation. Furthermore, locus-specific structural DNA variations, such as micro-deletions, duplications, repeat expansions, and retroelement insertions carry the potential to disrupt the broader epigenomic and transcriptional landscape far beyond the boundaries of the site-specific variation, highlighting the critical importance of long-range intra- and inter-chromosomal contacts for neuronal and glial function.


Assuntos
Cromossomos , Genoma , Animais , Humanos , Genoma/genética , Cromatina/genética , Núcleo Celular , Epigenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...